小雅米设计了一个有 nnn 个智体的多智体系统,但是由于某些原因,每个智体都需要运行在一台独立的电脑上,而且一旦其中一台电脑断电,整个系统就会崩溃。
不过小雅米已经准备好了所需的 nnn 台电脑,第 i(1≤i≤n)i(1\leq i\leq n)i(1≤i≤n) 台电脑电脑每秒消耗 aia_iai 焦耳的电能。
但是正当小雅米启动这个多智体系统的时候,小雅米家停电了... ...
于是小雅米赶紧检查了一下,他发现第 i(1≤i≤n)i(1\leq i\leq n)i(1≤i≤n) 台电脑还剩 bib_ibi 焦耳的电能。
小雅米有一台发电机,每秒可以产生 ppp 焦耳的电能给这些电脑充电。
他想知道这个多智体系统最多能坚持多少秒。
请注意:
输入数据第一行一个整数 T(1≤T≤10)T(1 \leq T \leq 10)T(1≤T≤10) 表示测试数据组数。
对于每组测试数据,第一行 222 个整数 n,p(1≤n≤105,1≤p≤109)n,p(1 \leq n \leq 10^5 , 1 \leq p \leq 10^9)n,p(1≤n≤105,1≤p≤109),表示电脑数量和发电机的功率(瓦)。
接下来 nnn 行,其中的第 i(1≤i≤n)i(1\leq i\leq n)i(1≤i≤n) 行为 222 个整数 ai,bi(1≤ai,bi≤105)a_i,b_i(1 \leq a_i,b_i \leq 10^5)ai,bi(1≤ai,bi≤105),表示第 iii 台电脑的功率(瓦)和剩余电能(焦耳)。
对于每组数据,输出一行一个实数,表示这个多智体系统最多能坚持多少秒。
如果这个多智体系统能永远坚持下去,则输出 −1-1−1。
你的输出与参考答案的绝对或相对误差在 10−410^{-4}10−4 以内都算正确。
3 2 1 2 2 2 1000 1 100 1 1 3 5 4 3 5 2 6 1
2.0000 -1 0.5000
对于第三个样例,在 12\frac 1221 秒的时间内,给第三台电脑充 222 焦耳的电能,并且给第二台电脑充 12\frac 1221 焦耳的电能。这样三台电脑都能运行 12\frac 1221 秒了。